翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

sheaf of modules : ウィキペディア英語版
sheaf of modules
In mathematics, a sheaf of ''O''-modules or simply an ''O''-module over a ringed space (''X'', ''O'') is a sheaf ''F'' such that, for any open subset ''U'' of ''X'', ''F''(''U'') is an ''O''(''U'')-module and the restriction maps ''F''(''U'') →''F''(''V'') are compatible with the restriction maps ''O''(''U'') →''O''(''V''): the restriction of ''fs'' is the restriction of ''f'' times that of ''s'' for any ''f'' in ''O''(''U'') and ''s'' in ''F''(''U'').
The standard case is when ''X'' is a scheme and ''O'' its structure sheaf. If ''O'' is the constant sheaf \underline^i(X, -) as the ''i''-th right derived functor of the global section functor \Gamma(X, -).〔This cohomology functor coincides with the right derived functor of the global section functor in the category of abelian sheaves; cf. 〕
== Examples ==

*If ''F'' is an ''O''-module, then an ''O''-submodule of ''F'' is called the ideal or ideal sheaf of ''O''.
*Let ''X'' be a smooth variety of dimension ''n''. Then the tangent sheaf of ''X'' is the dual of the cotangent sheaf \Omega_X and the canonical sheaf \omega_X is the ''n''-th exterior power (determinant) of \Omega_X.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「sheaf of modules」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.